back to top

Particella in una scatola monodimensionale: soluzioni, probabilità, grafici

Particella in una scatola monodimensionale: soluzioni e probabilità

Il modello della particella in una scatola monodimensionale è una tecnica utilizzata per trovare soluzioni approssimative per sistemi fisici più complessi. L’equazione che regola il comportamento di una particella in una scatola monodimensionale è la seguente:

Indice Articolo

PUBBLICITA

d^2φ / dx^2 = – 2m/ħ^2 [E – U(x)] φ(x)

dove φ(x) è la funzione d’onda, m è la massa della particella, ħ è la costante di Planck ridotta ( = h/2π), E è l’energia totale della particella e U(x) è l’energia potenziale della particella.

Soluzioni

Per trovare le soluzioni di questa equazione, è necessario impostare alcune condizioni. Le condizioni principali da considerare sono:

1) φ(x) → 0 quando x → ± ∞
2) φ(x) → se x è in un posto fisicamente incompatibile
3) φ(x) è una funzione continua
4) φ(x) è una funzione normalizzata

Considerando una particella in una scatola rigida di lunghezza L con pareti impenetrabili, notiamo che l’energia potenziale può assumere due valori:
U(x) = 0 se 0 ≤ x ≤ L
U(x) = ∞ se x L

Essendo la particella confinata all’interno della scatola, l’equazione d’onda della particella diventa:

d^2φ / dx^2 = – 2m/ħ^2 E φ(x)

Ponendo B^2 = 2mE/ħ^2, l’equazione diventa:
d^2φ / dx^2 = B^2 φ(x)

Un’ipotesi per trovare le soluzioni all’equazione d’onda è che φ(x) = sin(Bx). Dalla prima condizione, otteniamo BL = nπ, il che implica che B = nπ/L, dove n = 1,2,3…

Quindi, l’equazione d’onda per lo stato quantico n-simo vale:
φ_n(x) = √2/L sin(nπx/L) per 0 ≤ x ≤ L
mentre φ_n(x) = 0 per x L

Probabilità

La probabilità P_n di trovare la particella in una qualsiasi posizione sull’asse x è data dal quadrato di φ_n(x):
P_n(x) = ∣ φ_n(x)∣^2 = 2/L sen^2(nπx/L)

Questa equazione ci permette di individuare le regioni, dette nodi, in cui la probabilità di trovare la particella è pari a zero. Ad esempio, per trovare la probabilità di trovare la particella nello stato quantico 2 tra x = L/4 e x = 3L/4, possiamo utilizzare l’integrazione o risolvere il problema graficamente. La risoluzione grafica è particolarmente utile per funzioni la cui distribuzione è simmetrica.

Semplificando e comprendendo il modello della particella in una scatola monodimensionale, possiamo ottenere informazioni cruciali sul comportamento delle particelle all’interno di questo scenario.

Leggi anche

Il “bacio” Luna-Marte non sarà perso, visibile a occhio nudo e circondato di stelle cadenti

Stasera, 18 dicembre, si preannuncia un evento celeste di grande suggestione, con la congiunzione tra Luna e Marte, visibile a occhio nudo, condizioni meteorologiche...

Il calore corporeo può alimentare smartwatch e dispositivi indossabili, addio alle batterie?

Utilizzare il calore del corpo per alimentare un orologio o un sistema di aria condizionata personale? Non è così inverosimile come sembra. ©QUT Un team australiano...

Il rompicapo matematico più frustrante del mondo viene risolto in un trattato di 100 pagine.

Dopo mezzo secolo, la matematica risolve il problema del divano più grande: una sfida geometrica che esplora i limiti di...
è in caricamento