back to top

Particella in una scatola monodimensionale: soluzioni, probabilità, grafici

Particella in una scatola monodimensionale: soluzioni e probabilità

Il modello della particella in una scatola monodimensionale è una tecnica utilizzata per trovare soluzioni approssimative per sistemi fisici più complessi. L’equazione che regola il comportamento di una particella in una scatola monodimensionale è la seguente:

Indice Articolo

PUBBLICITA

d^2φ / dx^2 = – 2m/ħ^2 [E – U(x)] φ(x)

dove φ(x) è la funzione d’onda, m è la massa della particella, ħ è la costante di Planck ridotta ( = h/2π), E è l’energia totale della particella e U(x) è l’energia potenziale della particella.

Soluzioni

Per trovare le soluzioni di questa equazione, è necessario impostare alcune condizioni. Le condizioni principali da considerare sono:

1) φ(x) → 0 quando x → ± ∞
2) φ(x) → se x è in un posto fisicamente incompatibile
3) φ(x) è una funzione continua
4) φ(x) è una funzione normalizzata

Considerando una particella in una scatola rigida di lunghezza L con pareti impenetrabili, notiamo che l’energia potenziale può assumere due valori:
U(x) = 0 se 0 ≤ x ≤ L
U(x) = ∞ se x L

Essendo la particella confinata all’interno della scatola, l’equazione d’onda della particella diventa:

d^2φ / dx^2 = – 2m/ħ^2 E φ(x)

Ponendo B^2 = 2mE/ħ^2, l’equazione diventa:
d^2φ / dx^2 = B^2 φ(x)

Un’ipotesi per trovare le soluzioni all’equazione d’onda è che φ(x) = sin(Bx). Dalla prima condizione, otteniamo BL = nπ, il che implica che B = nπ/L, dove n = 1,2,3…

Quindi, l’equazione d’onda per lo stato quantico n-simo vale:
φ_n(x) = √2/L sin(nπx/L) per 0 ≤ x ≤ L
mentre φ_n(x) = 0 per x L

Probabilità

La probabilità P_n di trovare la particella in una qualsiasi posizione sull’asse x è data dal quadrato di φ_n(x):
P_n(x) = ∣ φ_n(x)∣^2 = 2/L sen^2(nπx/L)

Questa equazione ci permette di individuare le regioni, dette nodi, in cui la probabilità di trovare la particella è pari a zero. Ad esempio, per trovare la probabilità di trovare la particella nello stato quantico 2 tra x = L/4 e x = 3L/4, possiamo utilizzare l’integrazione o risolvere il problema graficamente. La risoluzione grafica è particolarmente utile per funzioni la cui distribuzione è simmetrica.

Semplificando e comprendendo il modello della particella in una scatola monodimensionale, possiamo ottenere informazioni cruciali sul comportamento delle particelle all’interno di questo scenario.

Leggi anche

La “terza spunta blu” su WhatsApp viene smentita: ecco come funzionerebbe

Un nuovo rumor riguardante una presunta “terza spunta blu” su WhatsApp ha cominciato a circolare nuovamente online, alimentando confusione tra gli utenti. Secondo questa...

La nuova tecnologia italiana trasforma la CO2 in bicarbonato di calcio immagazzinandola in mare

Lo sviluppo di nuove tecnologie per affrontare le sfide del cambiamento climatico è un tema di crescente interesse. Una delle innovazioni più recenti proviene...

Perché un viaggio può diventare così difficile da organizzare? I processi neurologici alla base

All’inizio dell’anno, i buoni propositi iniziano a plasmarsi e il 51% degli italiani già contempla viaggi da intraprendere nei mesi successivi, secondo una...
è in caricamento