Particella in una scatola monodimensionale: soluzioni, probabilità, grafici

Particella in una scatola monodimensionale: soluzioni e probabilità

Il modello della particella in una scatola monodimensionale è una tecnica utilizzata per trovare soluzioni approssimative per sistemi fisici più complessi. L’equazione che regola il comportamento di una particella in una scatola monodimensionale è la seguente:

Indice Articolo

d^2φ / dx^2 = – 2m/ħ^2 [E – U(x)] φ(x)

dove φ(x) è la funzione d’onda, m è la massa della particella, ħ è la costante di Planck ridotta ( = h/2π), E è l’energia totale della particella e U(x) è l’energia potenziale della particella.

Soluzioni

Per trovare le soluzioni di questa equazione, è necessario impostare alcune condizioni. Le condizioni principali da considerare sono:

1) φ(x) → 0 quando x → ± ∞
2) φ(x) → se x è in un posto fisicamente incompatibile
3) φ(x) è una funzione continua
4) φ(x) è una funzione normalizzata

Considerando una particella in una scatola rigida di lunghezza L con pareti impenetrabili, notiamo che l’energia potenziale può assumere due valori:
U(x) = 0 se 0 ≤ x ≤ L
U(x) = ∞ se x L

Essendo la particella confinata all’interno della scatola, l’equazione d’onda della particella diventa:

d^2φ / dx^2 = – 2m/ħ^2 E φ(x)

Ponendo B^2 = 2mE/ħ^2, l’equazione diventa:
d^2φ / dx^2 = B^2 φ(x)

Un’ipotesi per trovare le soluzioni all’equazione d’onda è che φ(x) = sin(Bx). Dalla prima condizione, otteniamo BL = nπ, il che implica che B = nπ/L, dove n = 1,2,3…

Quindi, l’equazione d’onda per lo stato quantico n-simo vale:
φ_n(x) = √2/L sin(nπx/L) per 0 ≤ x ≤ L
mentre φ_n(x) = 0 per x L

Probabilità

La probabilità P_n di trovare la particella in una qualsiasi posizione sull’asse x è data dal quadrato di φ_n(x):
P_n(x) = ∣ φ_n(x)∣^2 = 2/L sen^2(nπx/L)

Questa equazione ci permette di individuare le regioni, dette nodi, in cui la probabilità di trovare la particella è pari a zero. Ad esempio, per trovare la probabilità di trovare la particella nello stato quantico 2 tra x = L/4 e x = 3L/4, possiamo utilizzare l’integrazione o risolvere il problema graficamente. La risoluzione grafica è particolarmente utile per funzioni la cui distribuzione è simmetrica.

Semplificando e comprendendo il modello della particella in una scatola monodimensionale, possiamo ottenere informazioni cruciali sul comportamento delle particelle all’interno di questo scenario.

GLI ULTIMI ARGOMENTI

Leggi anche

Uranio impoverito viene identificato come potenziale rischio per la salute umana e l’ambiente

L'uranio impoverito, pur essendo meno radioattivo rispetto all'uranio naturale, ha scatenato allarmi globali per i suoi impieghi militari, i possibili effetti devastanti sulla salute...

Thiophenol Identified as Promising Compound in Advanced Chemical Applications

Il tiofenolo (PhSH), noto anche come benzenetiolo, sta emergendo come un vero campione nel campo della chimica organica, con la sua formula C₆H₅SH che...

Ricercatori scoprono le proprietà straordinarie della bentonite e i suoi ampi utilizzi

La bentonite, un’argilla naturale a struttura stratificata composta principalmente da minerali argillosi del gruppo delle smectiti – con la montmorillonite come componente dominante –...
è in caricamento