back to top

Variazione del potenziale con la concentrazione

Variazione del potenziale in relazione alla concentrazione delle specie:

La variazione del potenziale di una semicella è strettamente legata alla concentrazione delle specie coinvolte e può essere calcolata utilizzando l’. Ogni semireazione di riduzione presenta un , misurato in volt, che dipende direttamente dalle concentrazioni delle specie coinvolte secondo l’equazione di Nernst.

In una reazione elettrochimica del tipo “stato ossidato + n elettroni → stato ridotto”, il potenziale di riduzione è influenzato dalle concentrazioni delle specie secondo l’equazione di Nernst: Erid = E° + 0.059/n log [stato ossidato]/[stato ridotto]. E° rappresenta il potenziale normale di riduzione, mentre n è il numero di elettroni scambiati nella semireazione di riduzione. Rappresenta la costante dei gas, F è il Faraday e T la temperatura espressa in gradi Kelvin.

Dando specifici valori a R, F e T e trasformando l’equazione di Nernst da logaritmi naturali a logaritmi decimali, otteniamo: Erid = E° + 0.059/n log [stato ossidato]/[stato ridotto]. È importante notare che il potenziale E° non varia significativamente anche quando il rapporto [stato ossidato]/[stato ridotto] subisce notevoli variazioni.

Esempio numerico:

Considerando la coppia Fe3+/Fe2+, con E° pari a 0.77 V e n che rappresenta il numero di elettroni scambiati nella semireazione di riduzione (Fe3+ + 1 e- = Fe2+), possiamo osservare le variazioni del potenziale in base alle concentrazioni delle specie coinvolte. Ad esempio, per [Fe3+]/[Fe2+] = 1/1000 si ottiene un Erid di 0.59 V, mentre per [Fe3+]/[Fe2+] = 1 il valore diventa 0.77 V.

Limiti pratici:

È importante notare che in condizioni pratiche, non è possibile ottenere una soluzione con una concentrazione assolutamente pura dell’uno o dell’altro stato. Inoltre, l’acqua stessa agisce come riducente in condizioni in cui il potenziale è elevato. Analogamente, in condizioni in cui il potenziale è basso, l’acqua agisce come ossidante. Pertanto, il potenziale del sistema Fe3+/Fe2+ non può superare il valore di circa 1 V né può scendere al di sotto di circa 0.5 V a causa della presenza dell’acqua, che funge da limite per gli ossidanti e i riducenti. Le soluzioni che contengono contemporaneamente sia l’ossidante che il riducente coniugato hanno il potenziale di riduzione praticamente fissato intorno al valore del potenziale normale, sono cioè soluzioni a “”.

Analogie formali:

Una evidente analogia formale esiste tra l’equazione di Nernst e quella di Henderson-Hasselbalch, utilizzata nella determinazione del pH delle soluzioni tampone. Entrambe le equazioni dimostrano che la variazione del rapporto tra le specie coinvolte non comporta variazioni significative nel potenziale o nel pH, rispettivamente.

GLI ULTIMI ARGOMENTI

Leggi anche

Uranio impoverito viene identificato come potenziale rischio per la salute umana e l’ambiente

L'uranio impoverito, pur essendo meno radioattivo rispetto all'uranio naturale, ha scatenato allarmi globali per i suoi impieghi militari, i possibili effetti devastanti sulla salute...

Thiophenol Identified as Promising Compound in Advanced Chemical Applications

Il tiofenolo (PhSH), noto anche come benzenetiolo, sta emergendo come un vero campione nel campo della chimica organica, con la sua formula C₆H₅SH che...

Ricercatori scoprono le proprietà straordinarie della bentonite e i suoi ampi utilizzi

La bentonite, un’argilla naturale a struttura stratificata composta principalmente da minerali argillosi del gruppo delle smectiti – con la montmorillonite come componente dominante –...
è in caricamento