back to top

Legge di Hooke: formulazione, esempi

La Legge di Hooke, conosciuta anche come principio dell’elasticità, è un concetto fondamentale della fisica che descrive la relazione tra l’allungamento di una molla e la sua elasticità. Questa legge è stata formulata da Robert Hooke, un famoso scienziato inglese con vari interessi accademici.

Principio dell’elasticità secondo la Legge di Hooke

Secondo la Legge di Hooke, un corpo elastico subisce una deformazione direttamente proporzionale allo sforzo applicato ad esso. La costante di proporzionalità dipende dalle caratteristiche specifiche del materiale. È importante sottolineare che questa legge è valida solo all’interno di limiti specifici poiché un materiale non può essere allungato o compresso all’infinito senza subire danni permanenti.

La Legge di Hooke è un esempio tangibile del Primo Principio della Termodinamica, noto come principio di conservazione dell’energia. Quando una molla viene compressa o estesa, conserva quasi integralmente l’energia applicata ad essa, con la sola perdita dovuta all’attrito. Inoltre, questa legge contiene una funzione periodica ondulatoria, poiché una molla rilasciata da una posizione deformata tornerà alla sua configurazione originale con una forza proporzionale, in un movimento periodico.

Formulazione e Equazione della Legge di Hooke

La Legge di Hooke stabilisce che esiste una regione lineare nella curva che rappresenta lo sforzo e la deformazione di una molla, implicando una proporzionalità diretta. L’equazione che esprime la forza elastica di una molla sollecitata longitudinalmente è F = – kx, dove F rappresenta la forza, x l’allungamento o la compressione e k la costante elastica della molla in Newton per metro (N/m).

Scritta in forma di intensità F e modulo x di spostamento, l’equazione si riduce a F = kx.

Esempio pratico

Per esemplificare l’applicazione della Legge di Hooke, consideriamo una molla di lunghezza 0.25 m su cui viene posto un corpo di massa 25.0 kg. Sapendo che la costante elastica della molla è di 5000 N/m, possiamo calcolare la lunghezza della molla dopo la compressione.

La forza peso esercitata dal corpo è pari a F = m·a, dove a è l’accelerazione gravitazionale di 9.8 m/s2. Risolvendo l’equazione, otteniamo una lunghezza di compressione di 0.15 m.

Sottraendo questo valore dalla lunghezza iniziale della molla, si ottiene una lunghezza finale di 0.10 m dopo la compressione.

GLI ULTIMI ARGOMENTI

Leggi anche

La sonda Blue Ghost della NASA atterra sulla Luna per analizzare il sottosuolo del satellite terrestre.

La missione La sonda Blue Ghost è atterrata sulla Luna dopo un viaggio di quasi due mesi, avviando la Blue Ghost Mission 1,...

Un bacio tra Luna e Giove tra le Pleiadi: un evento visibile a occhio nudo da non perdere!

Evento Celeste del 5 Marzo Il 5 marzo si terrà un affascinante evento astronomico noto come il "bacio" tra Luna e Giove, visibile a occhio...

La montagna più alta: un impero di vetro inaccessibile a tutti.

Mount Kailash: montagna sacra Il Mount Kailash, situato in Tibet e parte della catena montuosa dei Gangdisê, è noto per essere la montagna più alta...
è in caricamento