Esercizi sull’innalzamento ebullioscopico

Esercizi sull’innalzamento ebullioscopico

Per comprendere l’innalzamento ebullioscopico, è essenziale discutere sia degli elettroliti, in cui si deve prendere in considerazione l’indice di van’t Hoff, sia dei non elettroliti.

In questi esercizi, per l’innalzamento ebullioscopico, è necessario conoscere la costante ebullioscopica del solvente e la sua temperatura di ebollizione. Questo fenomeno, insieme all’abbassamento crioscopico, alla pressione osmotica e all’abbassamento della tensione di vapore, rappresenta le proprietà colligative delle soluzioni. Queste dipendono solo dal numero di particelle di soluto nella soluzione e non dal tipo di soluto.

L’innalzamento ebullioscopico può essere calcolato utilizzando la formula: ΔT = m · Keb· i, dove m rappresenta la molalità della soluzione, Keb è la costante ebullioscopica del solvente e i è l’indice di van’t Hoff.

Le costanti Kb e le temperature di ebollizione sono proprietà caratteristiche che dipendono dall’identità del solvente. Si riportano di seguito i valori di Keb e di Teb di alcuni solventi:

| Solvente | Keb | Temperatura di ebollizione °C |
| ——– | ————- | —————————- |
| Acqua | 0.512 | 100.00 |
| Acetone | 1.80 | 56.08 |
| Benzene | 2.53 | 80.1 |
| Acido acetico | 3.22 | 117.9 |
| Cloroformio | 3.63 | 61.26 |
| Anilina | 3.82 | 184.1 |
| Tetracloruro di carbonio | 5.03 | 76.72 |
| Nitrobenzene | 5.24 | 210.9 |

Per calcolare la temperatura di ebollizione di una soluzione, è necessario tenere presente la molalità della soluzione, la costante ebullioscopica del solvente e l’indice di van’t Hoff.

Eseguiamo alcuni calcoli:

Calcolo della temperatura di ebollizione

Calcolare la temperatura di ebollizione di una soluzione 0.330 m di un non elettrolita non volatile in benzene.

Applicando la formula ΔT = m · Keb· i, tenendo conto che per i non elettroliti i = 1, otteniamo: ΔT = 0.330 · 2.73 = 0.835. La temperatura di ebollizione della soluzione è quindi T = 80.1 + 0.835 = 80.9 °C.

Calcolare la temperatura di ebollizione di una soluzione contenente 92.1 g di I2 in 800.0 g di cloroformio, assumendo che lo iodio non sia volatile.

Per calcolare la molalità della soluzione si devono conoscere le moli di iodio. La massa molare di I2 vale 126.90447 · 2 =253.80894 g/mol. Le moli di I2 sono 0.363. La molalità vale: m = 0.363 mol/0.8000 kg =0.454

ΔT = 0.454 · 3.63 = 1.65. La temperatura di ebollizione della soluzione è quindi T = 61.26 + 1.65 = 62.91 °C.

Calcolare la temperatura di ebollizione di una soluzione acquosa contenente 1.50 moli di NaI in 1.25 kg di acqua.

La molalità della soluzione è pari a: m = 1.50 mol/ 1.25 kg = 1.20. L’indice di van’t Hoff vale 2. ΔT = 1.20 · 0.512 · 2 = 1.23. La temperatura di ebollizione della soluzione è quindi T = 100.00 + 1.23 = 101.23 °C.

Calcolo della massa molare

Una soluzione acquosa di un non elettrolita che contiene 30.0 g di soluto solubilizzati in 250 g di acqua ha una temperatura di ebollizione di 101.04 °C. Calcolare la massa molare del soluto.

ΔT = 101.04 – 100.00 = 1.04. ΔT = m · Keb. Pertanto m = 1.04/ 0.512 = 2.03. moli soluto = 0.508. La massa molare è 30.0 g/0.508 mol = 59.1 g/mol.

GLI ULTIMI ARGOMENTI

LASCIA UN COMMENTO

Per favore inserisci il tuo commento!
Per favore inserisci il tuo nome qui

Leggi anche

Il Valles Marineris: il canyon più grande del sistema solare si trovava su Marte.

Valles Marineris: Dimensioni e Caratteristiche Valles Marineris, il canyon più grande del Sistema Solare, si estende per 4.000 km di lunghezza, 200 km di larghezza...

La Dead Internet Theory potrebbe realizzarsi grazie all’Intelligenza Artificiale.

Definizione della Teoria La “Dead Internet Theory” sostiene che Internet sia "morto" tra il 2016 e il 2017, dominato da contenuti creati in...

Il Carbonato di Alluminio: Proprietà e Applicazioni

Composizione e Stabilità del Carbonato di Alluminio Il carbonato di alluminio è un composto chimico instabile, costituito dallo ione alluminio (Al3+) e dallo ione carbonato...
è in caricamento