Esercizi sull’innalzamento ebullioscopico

Esercizi sull’innalzamento ebullioscopico

Per comprendere l’innalzamento ebullioscopico, è essenziale discutere sia degli , in cui si deve prendere in considerazione l’indice di van’t Hoff, sia dei non elettroliti.

In questi esercizi, per l’innalzamento ebullioscopico, è necessario conoscere la costante ebullioscopica del solvente e la sua temperatura di ebollizione. Questo fenomeno, insieme all’, alla e all’abbassamento della tensione di vapore, rappresenta le delle soluzioni. Queste dipendono solo dal numero di particelle di soluto nella soluzione e non dal tipo di soluto.

L’innalzamento ebullioscopico può essere calcolato utilizzando la formula: ΔT = m · Keb· i, dove m rappresenta la molalità della soluzione, Keb è la costante ebullioscopica del solvente e i è l’.

Le costanti Kb e le temperature di ebollizione sono proprietà caratteristiche che dipendono dall’identità del solvente. Si riportano di seguito i valori di Keb e di Teb di alcuni solventi:

| Solvente | Keb | Temperatura di ebollizione °C |
| ——– | ————- | —————————- |
| Acqua | 0.512 | 100.00 |
| Acetone | 1.80 | 56.08 |
| Benzene | 2.53 | 80.1 |
| Acido acetico | 3.22 | 117.9 |
| Cloroformio | 3.63 | 61.26 |
| Anilina | 3.82 | 184.1 |
| Tetracloruro di carbonio | 5.03 | 76.72 |
| Nitrobenzene | 5.24 | 210.9 |

Per calcolare la temperatura di ebollizione di una soluzione, è necessario tenere presente la molalità della soluzione, la costante ebullioscopica del solvente e l’indice di van’t Hoff.

Eseguiamo alcuni calcoli:

Calcolo della temperatura di ebollizione

Calcolare la temperatura di ebollizione di una soluzione 0.330 m di un non elettrolita non volatile in benzene.

Applicando la formula ΔT = m · Keb· i, tenendo conto che per i non elettroliti i = 1, otteniamo: ΔT = 0.330 · 2.73 = 0.835. La temperatura di ebollizione della soluzione è quindi T = 80.1 + 0.835 = 80.9 °C.

Calcolare la temperatura di ebollizione di una soluzione contenente 92.1 g di I2 in 800.0 g di cloroformio, assumendo che lo iodio non sia volatile.

Per calcolare la molalità della soluzione si devono conoscere le moli di iodio. La massa molare di I2 vale 126.90447 · 2 =253.80894 g/mol. Le moli di I2 sono 0.363. La molalità vale: m = 0.363 mol/0.8000 kg =0.454

ΔT = 0.454 · 3.63 = 1.65. La temperatura di ebollizione della soluzione è quindi T = 61.26 + 1.65 = 62.91 °C.

Calcolare la temperatura di ebollizione di una soluzione acquosa contenente 1.50 moli di NaI in 1.25 kg di acqua.

La molalità della soluzione è pari a: m = 1.50 mol/ 1.25 kg = 1.20. L’indice di van’t Hoff vale 2. ΔT = 1.20 · 0.512 · 2 = 1.23. La temperatura di ebollizione della soluzione è quindi T = 100.00 + 1.23 = 101.23 °C.

Calcolo della massa molare

Una soluzione acquosa di un non elettrolita che contiene 30.0 g di soluto solubilizzati in 250 g di acqua ha una temperatura di ebollizione di 101.04 °C. Calcolare la massa molare del soluto.

ΔT = 101.04 – 100.00 = 1.04. ΔT = m · Keb. Pertanto m = 1.04/ 0.512 = 2.03. moli soluto = 0.508. La massa molare è 30.0 g/0.508 mol = 59.1 g/mol.

GLI ULTIMI ARGOMENTI

Leggi anche

Uranio impoverito viene identificato come potenziale rischio per la salute umana e l’ambiente

L'uranio impoverito, pur essendo meno radioattivo rispetto all'uranio naturale, ha scatenato allarmi globali per i suoi impieghi militari, i possibili effetti devastanti sulla salute...

Thiophenol Identified as Promising Compound in Advanced Chemical Applications

Il tiofenolo (PhSH), noto anche come benzenetiolo, sta emergendo come un vero campione nel campo della chimica organica, con la sua formula C₆H₅SH che...

Ricercatori scoprono le proprietà straordinarie della bentonite e i suoi ampi utilizzi

La bentonite, un’argilla naturale a struttura stratificata composta principalmente da minerali argillosi del gruppo delle smectiti – con la montmorillonite come componente dominante –...
è in caricamento