back to top

Solubilità di sali derivanti da acidi deboli e pH. Esercizi

Solubilità dei sali derivanti da acidi deboli e influenza del pH: esempi risolti

La solubilità dei sali derivanti da acidi deboli aumenta all’abbassarsi del pH. Ad esempio, le statue in marmo costituite da carbonato di calcio, un sale derivante da un acido debole, si degradano a causa del contatto con le piogge acide, assumendo un aspetto ruvido e corrosivo.

Prendiamo in considerazione il fluoruro di calcio, un sale poco solubile che si dissocia in acqua secondo l’equilibrio eterogeneo:
CaF2(s) ⇄ Ca2+(aq) + 2 F(aq)
Questo è regolato dal Kps = 3.9 · 10-11. In acqua pura, all’equilibrio [Ca2+] = x e [F] = 2x. Sostituendo questi valori nell’espressione del Kps, otteniamo: Kps = 3.9 · 10-11 = [Ca2+] [F]2 = (x)(2x)2 = 4x3. Da cui x = solubilità molare = 2.1 · 10-4 M.

Riducendo il pH della soluzione, l’ione F derivante dall’acido debole HF, la cui Ka vale 6.76 · 10-4, viene protonato, diminuendo la sua concentrazione. Secondo il , l’equilibrio di dissociazione del fluoruro di calcio si sposta a destra, aumentandone la solubilità.

Esercizio 1: Calcolo della solubilità del fluoruro di calcio in una soluzione 0.10 M di HCl

Oltre all’equilibrio di dissociazione CaF2(s) ⇄ Ca2+(aq) + 2 F(aq), si tiene presente l’equilibrio di dissociazione di HF:
HF(aq) ⇄ H+(aq) + F(aq), regolato dalla Ka. La costante relativa a quest’ultimo equilibrio è pari a K = 1/Ka.

Moltiplicando per 2 quest’ultimo equilibrio e sommandolo a quello di dissociazione, si ottiene l’equilibrio:
CaF2(s) + 2 H+(aq) ⇄ Ca2+(aq) + 2 HF(aq). La costante relativa a questo equilibrio vale: K = Kps/Ka2 = 3.9 · 10-11 / (6.76 · 10-4)2 = 8.5 · 10-5.

Paragonando la solubilità del fluoruro di calcio in HCl 0.10 M e in acqua pura, si osserva un aumento di 28 volte a pH = 1.

Esercizio 2: Calcolo della solubilità del benzoato di argento

Il benzoato di argento dà luogo all’equilibrio di dissociazione:
C6H5COOAg(s) ⇄ C6H5COO(aq) + Ag+(aq).

In acqua pura, la solubilità molare è x, quindi Kps = 2.5 · 10-13 = (x)(x), da cui x = 5.0 · 10-7 M.

Considerando un pH di 3.19, l’equilibrio è dato da:
C6H5COO(aq) + H+(aq) ⇄ C6H5COOH(aq), regolato dalla costante K = 1/Ka. La costante relativa all’equilibrio della dissociazione del benzoato di argento vale K = Kps/Ka = 2.5 · 10-13 / 6.46 · 10-5 = 3.9 ·10-9. Alla concentrazione di H+ corrispondente a pH = 3.19, la solubilità molare del benzoato di argento è 1.6 · 10-6 M, cioè 3 volte maggiore rispetto a quella in acqua pura.

GLI ULTIMI ARGOMENTI

Leggi anche

Uranio impoverito viene identificato come potenziale rischio per la salute umana e l’ambiente

L'uranio impoverito, pur essendo meno radioattivo rispetto all'uranio naturale, ha scatenato allarmi globali per i suoi impieghi militari, i possibili effetti devastanti sulla salute...

Thiophenol Identified as Promising Compound in Advanced Chemical Applications

Il tiofenolo (PhSH), noto anche come benzenetiolo, sta emergendo come un vero campione nel campo della chimica organica, con la sua formula C₆H₅SH che...

Ricercatori scoprono le proprietà straordinarie della bentonite e i suoi ampi utilizzi

La bentonite, un’argilla naturale a struttura stratificata composta principalmente da minerali argillosi del gruppo delle smectiti – con la montmorillonite come componente dominante –...
è in caricamento