back to top

Luce polarizzata: chiralità, radiazione polarizzata

Luce Polarizzata: Chiralità e Radiazione Polarizzata

La luce polarizzata si caratterizza per la vibrazione del campo elettrico E in un solo piano, mentre il campo magnetico H vibra in un piano perpendicolare. La polarizzazione è lineare quando entrambi i campi oscillano in una direzione unica.

Alcune sostanze, note come otticamente attive, hanno la capacità di ruotare la direzione di propagazione della luce monocromatica. Si manifesta solo nello stato solido per sostanze come il quarzo, il cinabro e il clorato di sodio, un fenomeno che ha origine dalla struttura cristallina del materiale.

Mentre il potere rotatorio di altre sostanze persiste anche nello stato gassoso, liquido o in soluzione, derivando dalle proprietà strutturali delle molecole. La condizione affinché una sostanza sia otticamente attiva è che la struttura della molecola e della sua immagine speculare non coincidano.

Chiralità

Le sostanze otticamente attive sono definite chirali, presenti principalmente nella materia organica, mentre quelle inorganiche lo sono a causa della loro struttura cristallina.

La radiazione monocromatica è costituita da campi elettrici e magnetici oscillanti. Nel caso della luce polarizzata in un piano, il vettore E vibra in un unico piano, così come il vettore H vibrante in un piano ortogonale.

In una radiazione polarizzata circolarmente, i vettori E e H vibrano ruotando contemporaneamente nella direzione di propagazione, formando un’elica.

Radiazione Circolarmente Polarizzata

Una radiazione può essere polarizzata circolarmente in senso orario (d) o in senso antiorario (l). La radiazione polarizzata linearmente può essere immaginata come due radiazioni polarizzate circolarmente in senso opposto che si propagano in fase.

L’interazione di una radiazione polarizzata con una molecola può generare un indice di rifrazione differente. La differenza è chiamata birifrangenza circolare e un differente coefficiente di estinzione molare, determinando una diversa direzione di polarizzazione della radiazione dopo l’interazione.

Birifrangenza Circolare

Se la radiazione interagisce con una molecola che è l’immagine speculare della precedente, la direzione di polarizzazione è ruotata di un angolo α uguale al precedente, ma in senso opposto. La compensazione di effetti opposti genera una mancata rotazione della direzione di polarizzazione.

In conclusione, la polarizzazione e la birifrangenza circolare sono fenomeni interessanti che sottolineano la complessità e la varietà del comportamento della luce polarizzata.

GLI ULTIMI ARGOMENTI

Leggi anche

Niobato di sodio emerge come materiale chiave per innovazioni tecnologiche, con applicazioni in campi avanzati.

Il niobato di sodio (NaNbO₃) è un ossido inorganico appartenente alla classe dei niobati alcalini, noto per le sue eccellenti proprietà ferroelettriche, antiferroelettriche, piezoelettriche...

Svolta rivoluzionaria nella ricerca su N,N-dimetilacetammide

La N,N-dimetilacetammide (DMA) sta conquistando il mondo della chimica industriale come un vero campione, con la sua formula molecolare C₄H₉NO e struttura CH₃CON(CH₃)₂ che...

Approccio Hartree-Fock in meccanica quantistica.

Il Metodo Hartree-Fock nella Chimica Quantistica La chimica quantistica computazionale si avvale del metodo Hartree-Fock come base essenziale. Spesso, questo approccio funge da punto di...
è in caricamento