Teorema di Nernst ed estensione di Planck

Teorema di Nernst e Estensione di Planck: Principi della Termodinamica

Il teorema di Nernst, essenziale in termodinamica, afferma che l’entropia di un sistema tende a zero quando la temperatura assoluta del sistema tende a zero. Nel primo decennio del ventesimo secolo, Walther Nernst, mediante lo studio delle capacità termiche e dei calori di reazione a temperature decrescenti, formulò il proprio teorema, noto anche come teorema del calore.

Le reazioni chimiche possono essere classificate in due categorie: quelle che producono calore (reazioni esotermiche) e quelle che assorbono calore dall’ambiente (reazioni endotermiche). A pressione costante, il calore acquisito o perso corrisponde a un aumento o una diminuzione dell’entalpia H. La variazione del calore di reazione, espressa come ΔH, risulta positiva per le reazioni endotermiche e negativa per le reazioni esotermiche.

L’entità della variazione di entalpia non fornisce informazioni sulla spontaneità della reazione. Infatti, sia le reazioni endotermiche che quelle esotermiche possono avvenire spontaneamente. L’unico parametro che consente di predire la spontaneità di una reazione dal punto di vista termodinamico è la variazione dell’energia libera di Gibbs.

Nernst dedusse dai suoi esperimenti che, con la diminuzione della temperatura, la variazione di entalpia e dell’energia libera di Gibbs assumevano valori sempre più simili, e che la variazione di ΔG con il variare della temperatura diventava sempre più ridotta man mano che la temperatura diminuiva.

Tali evidenze sperimentali sono coerenti con l’espressione della variazione dell’energia libera di Gibbs: ΔH = ΔG – T( δ(ΔG/δT)p.

Nernst avanzò l’ipotesi che, nel limite in cui T tende a zero, ΔH dovrebbe essere uguale a ΔG, giustificato dal fatto che, per ( δ(ΔG/δT)p =  – ΔS, “le reazioni chimiche che avvengono alle temperature prossime allo zero assoluto avvengono senza variazione di entropia”, istituendo il teorema di Nernst.

Successivamente, Planck estese tali considerazioni suggerendo che non solo ΔG tende a ΔH quando T tende a zero, ma che l’entalpia e la funzione di Gibbs del sistema si avvicinano reciprocamente in modo asintotico allo stesso modo nel limite per T tendente a zero, G tende a H e ( δ(ΔG/δT)p tende a 0.

Questa estensione porta a una vasta gamma di risultati, come ad esempio la definizione del significato di variazione di entropia, stabilendo che l’entropia si avvicina a zero quando la temperatura si avvicina a zero. Il teorema di Nernst e l’estensione di Planck portano alla formulazione del terzo principio della termodinamica: “Ogni sostanza pura ha un valore positivo di entropia che diviene pari a zero allo zero assoluto quando essa, in queste condizioni, è un solido cristallino perfetto”.

Sullo stesso argomento

Il padre della chimica moderna e la trasformazione delle scienze naturali nel XVIII secolo

Antoine Lavoisier è considerato il padre della chimica moderna le cui scoperte, in campo della chimica sono equivalenti a quelle di Isaac Newton in...

August Kekulé: Un Viaggio Rivoluzionario nella Struttura Molecolare

August Kekulé è un chimico tedesco nato nel 1829, noto soprattutto per aver gettato le basi per la teoria strutturale in chimica organica. Appartenente...

Leggi anche

Il padre della chimica moderna e la trasformazione delle scienze naturali nel XVIII secolo

Antoine Lavoisier è considerato il padre della chimica moderna le cui scoperte, in campo della chimica sono equivalenti a quelle di Isaac Newton in...

Selezione di un Riferimento Primario per le Analisi di Laboratorio

La scelta dello standard primario costituisce il punto di partenza per l’accuratezza di una titolazione. Le titolazioni consentono di conoscere la concentrazione di un...

Metodi alternativi per la determinazione di composti: una guida dettagliata

Gli standard secondari sono sostanze chimiche utilizzate in chimica analitica per determinazioni volumetriche che vengono standardizzate tramite l'uso di uno standard primario. Quindi, gli...