back to top

Ordine di riempimento degli elementi del blocco d: diagramma delle energie

Ordine di riempimento degli orbitali dei metalli del blocco d: diagramma delle energie

L’ordine di riempimento degli orbitali dei metalli del blocco d, tranne per il cromo e il rame, avviene riempiendo prima l’orbitale 4s e successivamente l’orbitale 3d. Il metodo dell’Aufbau, proposto per primo da Niels Bohr 1920, costituisce uno strumento per comprendere come gli elettroni di un atomo si dispongono intorno al nucleo.

Per stabilire in quali orbitali atomici si accomodano gli elettroni si deve partire dal principio di esclusione di Pauli, dalla e dal diagramma delle energie. Secondo il principio di Pauli, in un atomo non possono esserci due elettroni aventi gli stessi numeri quantici, ovvero in un livello energetico possono essere presenti al massimo due elettroni e, se ve ne sono due, essi devono avere spin opposti.

Nel rispetto della regola di Hund, o principio della massima molteplicità, quando devono essere riempiti orbitali aventi la stessa energia, gli elettroni si dispongono prima con spin parallelo, ovvero uno per orbitale, e solo se il loro numero lo consente, vanno successivamente a saturare gli orbitali.

Diagramma delle energie

Il diagramma delle energie mostra che gli orbitali 3d hanno energia maggiore rispetto all’orbitale 4s, quindi quest’ultimo orbitale va riempito prima dell’orbitale 3d.

Questo fenomeno non si verifica solo per l’orbitale 4s, ma anche, ad esempio, per il 5s rispetto all’orbitale 4d e per l’orbitale 4f rispetto al 6s. Dalla configurazione elettronica dei metalli del blocco d, tranne per il cromo e il rame, si notare l’ordine di riempimento.

Tabella

Elemento | Numero atomico | Configurazione elettronica
————- | ————— | ————————-
Scandio | 21 | [Ar] 3d¹, 4s²
Titanio | 22 | [Ar] 3d², 4s²
| 23 | [Ar] 3d³, 4s²
Cromo | 24 | [Ar] 3d⁵, 4s¹
Manganese | 25 | [Ar] 3d⁵, 4s²
Ferro | 26 | [Ar] 3d⁶, 4s²
Cobalto | 27 | [Ar] 3d⁷, 4s²
Nichel | 28 | [Ar] 3d⁸, 4s²
Rame | 29 | [Ar] 3d¹⁰, 4s¹
Zinco | 30 | [Ar] 3d¹⁰, 4s²

Consideriamo ora la configurazione elettronica del ferro e dello ione Fe^3+:

– Fe : [Ar] 3d⁶, 4s²
– Fe^3+: [Ar] 3d⁵

La configurazione dello ione ferro mostra un’incongruenza rispetto a quanto detto in precedenza. Infatti, se l’orbitale 3d ha un’energia maggiore rispetto all’orbitale 4s, allora gli elettroni dovrebbero essere persi dall’orbitale 3d. Per gli elementi del blocco d, dallo scandio allo zinco, l’energia degli orbitali 3d è minore rispetto a quella dell’orbitale 4s.

Pertanto, la configurazione elettronica dello scandio non è [Ar] 3d³, bensì [Ar] 3d¹, 4s². Tuttavia, quando gli elementi del blocco d perdono elettroni per dare ioni, gli elettroni che vengono persi per primi sono quelli dell’orbitale 4s.

Si noti inoltre che le eccezioni del cromo e del rame sono dovute al fatto che è presente maggiore stabilità a causa del riempimento parziale e totale degli orbitali 3d rispettivamente.

GLI ULTIMI ARGOMENTI

Leggi anche

Perché l’UE fatica a diventare indipendente dalle armi USA: il riarmo europeo in corso.

Industrie della Difesa in Europa I Paesi europei mantengono un complesso militare-industriale significativo, nonostante il suo ridimensionamento rispetto alla Guerra Fredda. Alcuni colossi dell'industria bellica...

Scopri la verità sulla “Time-Free Zone” e i suoi misteri.

Sommarøy: un'isola del tempo abolito Sommarøy è una località norvegese situata a nord del Circolo Polare Artico, nella contea di Troms. A causa della sua...

Il Bunker del Monte Soratte: Storia di un Rifugio Storico

Perché furono costruite le gallerie del Soratte durante il fascismo Le gallerie del Monte Soratte, progettate da Benito Mussolini, furono realizzate tra il 1937 e...
è in caricamento