back to top

Potenziale di riduzione in condizioni non standard. Esercizi, equazione di Nernst

Calcolo del Potenziale di Riduzione in Condizioni Non Standard Utilizzando l’Equazione di Nernst

L’equazione di Nernst è uno strumento fondamentale in elettrochimica per calcolare il potenziale di riduzione in condizioni non standard, tenendo conto delle variazioni nella concentrazione dei reagenti e dei prodotti. Mentre il potenziale normale di riduzione si riferisce a condizioni standard, l’equazione di Nernst ci permette di calcolare il potenziale in condizioni diverse. L’equazione è definita come:

E = E° + 0.05916/n log [stato ossidato] / [stato ridotto],

dove E° rappresenta il potenziale normale di riduzione, n è il numero di elettroni scambiati nella semireazione di riduzione e [stato ossidato] e [stato ridotto] sono le concentrazioni dei reagenti e dei prodotti.

Calcoli del Potenziale di Riduzione in Condizioni Non Standard

Di seguito sono presentati alcuni esercizi che illustrano come calcolare il potenziale di una semicella in condizioni non standard utilizzando l’equazione di Nernst:

1.

Zn^2+ a Concentrazione 0.10 M

: Se il potenziale normale di riduzione relativo a Zn^2+ è E° = -0.763 V, il potenziale calcolato utilizzando l’equazione di Nernst è E = -0.793 V.

2.

Al^3+ a Concentrazione 0.0010 M

: Con un potenziale normale di riduzione relativo a Al^3+ di E° = -1.66 V, il calcolo del potenziale con l’equazione di Nernst dà E = -1.72 V.

3.

Elettrodo di Platino a Contatto con Idrogeno Gassoso e Ioni H^+ a Concentrazione 0.10 M

: Se il potenziale normale di riduzione relativo a questa semireazione è E° = 0.00 V, il potenziale calcolato con l’equazione di Nernst risulta E = -0.05961 V.

4.

Fe^2+ a Concentrazione 0.20 M e Fe^3+ a Concentrazione 0.10 M

: Con un potenziale normale di riduzione relativo a questa semireazione di E° = +0.771 V, il calcolo del potenziale mediante l’equazione di Nernst dà E = +0.753 V.

5.

Mn^2+ a Concentrazione 0.10 M e MnO_4^- a Concentrazione 0.15 M

: Con un potenziale normale di riduzione relativo a questa semireazione di E° = +1.51 V, il calcolo del potenziale utilizzando l’equazione di Nernst dà E = +1.42 V.

Conclusioni

Questi esercizi dimostrano l’utilità dell’equazione di Nernst nel calcolare il potenziale di riduzione in condizioni non standard, considerando le variazioni nella concentrazione dei reagenti e dei prodotti. Questo strumento è essenziale in ambito elettrochimico per comprendere e prevedere il comportamento dei sistemi in condizioni diverse da quelle standard.

GLI ULTIMI ARGOMENTI

Leggi anche

Niobato di sodio emerge come materiale chiave per innovazioni tecnologiche, con applicazioni in campi avanzati.

Il niobato di sodio (NaNbO₃) è un ossido inorganico appartenente alla classe dei niobati alcalini, noto per le sue eccellenti proprietà ferroelettriche, antiferroelettriche, piezoelettriche...

Svolta rivoluzionaria nella ricerca su N,N-dimetilacetammide

La N,N-dimetilacetammide (DMA) sta conquistando il mondo della chimica industriale come un vero campione, con la sua formula molecolare C₄H₉NO e struttura CH₃CON(CH₃)₂ che...

Approccio Hartree-Fock in meccanica quantistica.

Il Metodo Hartree-Fock nella Chimica Quantistica La chimica quantistica computazionale si avvale del metodo Hartree-Fock come base essenziale. Spesso, questo approccio funge da punto di...
è in caricamento