Seleniuro di rame, indio e gallio

Seleniuro di rame, indio e gallio: un promettente semiconduttore per le celle solari

Il seleniuro di rame, indio e gallio è un semiconduttore ampiamente utilizzato nelle celle solari grazie alle sue eccezionali proprietà elettroniche e ottiche. Questo materiale rappresenta una promettente alternativa nei dispositivi fotovoltaici e nella produzione di energia solare, offrendo un’opzione sostenibile rispetto ai combustibili fossili.

Oltre ai wafer di silicio, la tecnologia a film sottile, che include il tellururo di cadmio, il silicio amorfo e il seleniuro di rame, indio e gallio, ha dimostrato di avere grandi potenzialità e versatilità nella produzione commerciale di celle solari.

Composizione e struttura dei film sottili

Le celle solari basate sul seleniuro di rame, indio e gallio sono costituite da una serie di film depositati su un substrato rigido o flessibile. Il film di Cu(In,Ga)Se2 è coperto da un film di molibdeno, mentre un’eterogiunzione è creata con la deposizione di uno strato di solfuro di cadmio e uno strato finestra trasparente di ossido di zinco ZnO fortemente drogato.

Dal punto di vista strutturale, il seleniuro di rame, indio e gallio presenta una struttura cristallina simile alla calcopirite, con anioni Se2- coordinati da cationi di rame, indio e gallio. La sostituzione parziale dell’indio con il gallio porta a una diminuzione delle costanti del reticolo, in quanto il raggio atomico del gallio è inferiore a quello dell’indio.

Proprietà e tecnologie di produzione

Il gap di banda del seleniuro di rame, indio e gallio varia tra 1.02 e 1.67 eV in base al rapporto di Cu/(In, Ga). La produzione del CIGS può avvenire attraverso diversi metodi, come la coevaporazione e la sintesi di nanoparticelle sferiche attraverso reazioni chimiche controllate.

La coevaporazione, ad esempio, richiede il riscaldamento e l’evaporazione di quattro sorgenti di Cu, In, Ga e Se, con la sfida del controllo dei flussi degli elementi nel processo. Al contrario, la sintesi di nanoparticelle sferiche implica la reazione di polveri elementari di Cu, In, Se e nitrato di gallio in un’autoclave, utilizzando etilendiammina come solvente e mantenendo una temperatura di 200°C per 36 ore.

Un altro processo coinvolge la depositazione di precursori metallici in una prima fase e la selenizzazione in una seconda fase utilizzando seleniuro di idrogeno o polveri di selenio.

In conclusione, il seleniuro di rame, indio e gallio rappresenta una risorsa preziosa nel settore delle celle solari, offrendo un’eccellente alternativa nei processi di produzione di energia solare con un’attenzione particolare alle tecnologie a film sottile.

Sullo stesso argomento

Il padre della chimica moderna e la trasformazione delle scienze naturali nel XVIII secolo

Antoine Lavoisier è considerato il padre della chimica moderna le cui scoperte, in campo della chimica sono equivalenti a quelle di Isaac Newton in...

August Kekulé: Un Viaggio Rivoluzionario nella Struttura Molecolare

August Kekulé è un chimico tedesco nato nel 1829, noto soprattutto per aver gettato le basi per la teoria strutturale in chimica organica. Appartenente...

Leggi anche

Il padre della chimica moderna e la trasformazione delle scienze naturali nel XVIII secolo

Antoine Lavoisier è considerato il padre della chimica moderna le cui scoperte, in campo della chimica sono equivalenti a quelle di Isaac Newton in...

Selezione di un Riferimento Primario per le Analisi di Laboratorio

La scelta dello standard primario costituisce il punto di partenza per l’accuratezza di una titolazione. Le titolazioni consentono di conoscere la concentrazione di un...

Metodi alternativi per la determinazione di composti: una guida dettagliata

Gli standard secondari sono sostanze chimiche utilizzate in chimica analitica per determinazioni volumetriche che vengono standardizzate tramite l'uso di uno standard primario. Quindi, gli...