back to top

Benzene: delocalizzazione

La Delocalizzazione nel Benzene

Il benzene è costituito da C6He possiede quattro luoghi di insaturazione. Come ci si poteva aspettare, una tale molecola è altamente reattiva verso attacchi elettrofili attraverso reazioni di addizione. Tuttavia, a differenza di un alchene, il benzene presenta una notevole stabilità. Questa peculiare stabilità può essere valutata misurando il calore di idrogenazione del cicloesene e del benzene guardando le reazioni seguenti:

C6H10 + H2 = C6H12 + 28.6 kcal/mol

C6H6 + 3 H2 = C6H12 + 49.8 kcal/mol

Se il benzene fosse costituito da un ipotetico cicloesatriene non coniugato con tre doppi legami, il calore di idrogenazione dovrebbe essere triplo rispetto a quello del cicloesene, ovvero 3 ∙ 28.6 = 85.8 kcal/mol. Tuttavia, i dati sperimentali mostrano un calore di idrogenazione pari a 49.8 kcal/mol, 36 kcal/mol inferiore a quanto previsto. Ciò dimostra la notevole stabilità del benzene rispetto al composto con elettroni localizzati. Questa differenza di 36 kcal/mol viene chiamata energia di delocalizzazione o energia di delocalizzazione. Un composto come il benzene, che presenta un’elevata energia di delocalizzazione, è considerato stabilizzato per delocalizzazione.

La principale conseguenza di questa stabilità è la scarsa reattività rispetto ai polieni aciclici. Si dice infatti che questi composti siano aromatici, ovvero possiedano proprietà aromatiche.

Regola di Hückel

Nel 1931, Hückel ha pubblicato uno studio teorico basato sulla teoria degli orbitali molecolari, secondo il quale sistemi ciclici contenenti 4n + 2 elettroni π, dove n è un numero intero, presenterebbero una particolare stabilità. Questa regola prende il nome di regola di Hückel.

Quando n = 0, un composto contenente (4 ∙ 0) + 2 = 2 elettroni π è aromatico.

Quando n = 1, un composto contenente (4∙1) + 2 = 6 elettroni π, come il benzene, è aromatico. Analogamente, quando n = 2, un composto contenente (4∙2) + 2 = 10 elettroni π è anch’esso aromatico.

In conclusione:

aromatici: 2, 6, 10, 14, 18 elettroni π

antiaromatici: 4, 8, 12, 16, 20 elettroni π

Al contrario, il ciclobutadiene, che ha 4 elettroni π, e il cicloottatetraene, che ha 8 elettroni π, non sono composti aromatici.

GLI ULTIMI ARGOMENTI

Leggi anche

Niobato di sodio emerge come materiale chiave per innovazioni tecnologiche, con applicazioni in campi avanzati.

Il niobato di sodio (NaNbO₃) è un ossido inorganico appartenente alla classe dei niobati alcalini, noto per le sue eccellenti proprietà ferroelettriche, antiferroelettriche, piezoelettriche...

Svolta rivoluzionaria nella ricerca su N,N-dimetilacetammide

La N,N-dimetilacetammide (DMA) sta conquistando il mondo della chimica industriale come un vero campione, con la sua formula molecolare C₄H₉NO e struttura CH₃CON(CH₃)₂ che...

Approccio Hartree-Fock in meccanica quantistica.

Il Metodo Hartree-Fock nella Chimica Quantistica La chimica quantistica computazionale si avvale del metodo Hartree-Fock come base essenziale. Spesso, questo approccio funge da punto di...
è in caricamento