back to top

Sostituzione elettrofila aromatica: nitrazione, solfonazione, alogenazione, acilazione, alchilazione

Sostituzione Elettrofila Aromatica: Nitrazione, Solfonazione, Alogenazione, Acilazione, Alchilazione

La sostituzione elettrofila aromatica rappresenta un processo chimico che si svolge in due fasi distinti: la prima fase porta all’addizione di un elettrofilo, spesso generato in situ, producendo un intermedio noto come intermedio di Wheland. Questo intermedio presenta un carbonio all’interno dell’anello benzenico con carica positiva, stabilizzato per risonanza. Serve da catione cicloesadienilico ad alta energia, in quanto il sistema π del benzene non è più presente; l’elettrofilo è legato a un carbonio tramite legame σ.

Nella seconda fase, avviene l’eliminazione di un protone dall’anello benzenico da parte di una base, generalmente il controione dell’elettrofilo, riportando l’aromaticità.

Il risultato della sostituzione elettrofila aromatica si traduce nella sostituzione di un idrogeno del benzene con un elettrofilo.

In relazione a questo meccanismo, è possibile identificare l’elettrofilo conoscendo il prodotto, poiché corrisponde a ciò che sostituisce un idrogeno; viceversa, conoscendo l’elettrofilo si può prevedere il prodotto della reazione.

# Reazioni di Sostituzione Elettrofila Aromatica

| Nome della reazione | Reagente | Catalizzatore | Elettrofilo | Prodotto |
| ——————————————————|—————–|—————–|————–|———————-|
| Nitrazione | HNO3 | H2SO4 | NO2+ | C6H5NO2 |
| Solfonazione | SO3 | H2SO4 | HSO3+ | C6H5SO3H |
| Alogenazione | Br2 o Cl2 | FeBr3 | Br+ o Cl+ | C6H5Br o C6H5Cl |
| Alchilazione di Friedel Crafts | RX (alogenuro alchilico) | AlCl3 | R+ | C6H5R |
| Alcilazione di Friedel Crafts | RCOCl (alogenuro acilico) | AlCl3 | RC+=O | C6H5COR |

# Meccanismo

La comprensione di come il catalizzatore trasformi il reagente in un elettrofilo non è così diretta come la relazione tra l’elettrofilo e il prodotto. Vi sono due modelli: il primo si applica quando l’elettrofilo viene ottenuto dall’allontanamento di un alogenuro dal reagente, come avviene nel caso dell’alogenazione, dell’alchilazione di Friedel-Crafts e nell’acilazione di Friedel-Crafts.

Ad esempio, la formazione di un carbocatione dalla reazione tra un alogenuro acilico e il cloruro di alluminio è un esempio tipico di questo modello.

Il catalizzatore svolge il ruolo di legarsi a un gruppo uscente con formazione dell’elettrofilo. Mentre nel caso di nitrazione e solfonazione, il catalizzatore è costituito da acido solforico.

In particolare, il catalizzatore svolge il compito di generare in situ un forte elettrofilo che, a seguito dell’attacco del benzene, forma un legame covalente. La reazione si completa con l’allontanamento di uno ione H+.

Leggi anche

Siglata a Roma la nuova partnership tecnologica tra USB SPA e WWF

Quando la natura incontra la tecnologia, nascono collaborazioni potenti. WWF Italia e USB SPA uniscono le forze per portare innovazione digitale alla tutela dell’ambiente:...

I frammenti di DNA più antichi mai scoperti rivelano informazioni sorprendenti su circa 2 milioni di anni.

I frammenti di DNA più antichi mai scoperti risalgono a circa 2 milioni di anni fa e appartengono a diverse specie di alberi, piante,...

Pteridina : studiata per il suo potenziale utilizzo nella ricerca scientifica

La pteridina è un composto eterociclico aromatico presente nei sistemi biologici, che ha attirato l'attenzione per il suo ruolo in diverse funzioni biologiche. Con...
è in caricamento