back to top

Ferriti : esplorazione delle proprietà e applicazioni dei composti ferromagnetici.

Le ferriti sono composti chimici caratterizzati da proprietà ferrimagnetiche, ottenuti mediante la combinazione di due ossidi. In genere, la componente principale è rappresentata dall’ossido di ferro(III) (Fe₂O₃), a cui si associa un ossido di un elemento bivalente, ad esempio nichel, manganese, magnesio, zinco, rame o ferro. Questi materiali sono noti per la loro capacità di essere facilmente magnetizzati e per le loro eccellenti proprietà magnetiche, elettriche e ottiche.

La storia delle ferriti affonda le radici in epoche antichissime, risalenti a secoli prima di Cristo, con la scoperta di pietre capaci di attrarre il ferro. I depositi più abbondanti di tali materiali furono rinvenuti nel distretto di Magnesia, in Asia Minore, da cui deriva il nome della mineralogia magnetite.


Proprietà e Applicazioni

Le ferriti presentano una serie di proprietà che le rendono materiali indispensabili per numerose applicazioni:

  • Proprietà Magnetiche:
    Il fenomeno del ferrimagnetismo si manifesta attraverso l’allineamento parziale dei momenti magnetici degli atomi. In questi materiali, i momenti magnetici possono disporre sia in maniera parallela (come nel ferromagnetismo) sia in maniera antiparallela (come nell’antiferromagnetismo), ma a causa della disuguaglianza dei momenti, si ottiene una magnetizzazione spontanea. Questo comportamento è determinato dal momento di dipolo magnetico associato allo spin degli elettroni.
  • Proprietà Elettriche ed Ottiche:
    Le ferriti possiedono elevata resistività elettrica e bassa perdita dovuta a correnti parassite. Esse mostrano inoltre elevata permeabilità magnetica, stabilità tempo-temperatura e una risposta operativa in un’ampia gamma di frequenze, il tutto con una versatilità di forma e a costi contenuti.
  • Applicazioni Tecnologiche:
    Grazie a tali proprietà, le ferriti trovano impiego in numerosi settori, tra cui:
    • Biomedicina
    • Display magneto-ottici
    • Batterie a ioni litio ricaricabili
    • Dispositivi a microonde e antenne radio
    • Nuclei di trasformatori e dispositivi elettronici miniaturizzati
    • Sensori (inclusi sensori di umidità e biosensori)
    • Registrazioni magnetiche e supporti ad alta densità
    • Dispositivi per l’energia solare e fluidi magnetici

In particolare, la possibilità di controllare la morfologia e le dimensioni delle ferriti a scala nanometrica attraverso specifiche vie sintetiche ne amplia il potenziale di utilizzo in campi quali il trattamento delle acque reflue, la catalisi, l’elettronica e la biomedicina.


Classificazione delle Ferriti

La classificazione delle ferriti può essere effettuata in base alle proprietà magnetiche e alle strutture cristalline.

1. In Base alle Proprietà Magnetiche

Le ferriti vengono suddivise in due categorie principali:

  • Ferriti Soft:
    Questi materiali, generalmente costituiti da ossido di ferro combinato con altri ossidi metallici (ad es. nichel, zinco, manganese), presentano elevata permeabilità magnetica e bassa coercitività. Tale caratteristica le rende facilmente magnetizzabili e smagnetizzabili, rendendole ideali per applicazioni in dispositivi ad alta frequenza come trasformatori, induttori, schermature magnetiche e antenne radio.
  • Ferriti Hard:
    Composte tipicamente da ferriti di bario o stronzio, esse mostrano elevata coercitività e bassa permeabilità magnetica, risultando più difficili da magnetizzare e smagnetizzare. Queste proprietà le rendono particolarmente indicate per applicazioni in dispositivi che richiedono campi magnetici forti e stabili, quali motori elettrici, altoparlanti e separatori magnetici.

2. In Base alle Strutture Cristalline

Le ferriti si classificano, inoltre, in quattro gruppi principali in funzione della loro struttura cristallina:

  • Ferriti del Gruppo dello Spinello:
    Con formula generale MB2O4\mathrm{MB_2O_4}, dove MM è un catione metallico bivalente (es. Mg, Fe, Zn, Mn, Ni) e BB è generalmente costituito da elementi come Al, Cr o Fe, queste ferriti si suddividono in diverse serie a seconda della natura di BB.
    • Serie alluminica: Ad esempio, la gahnite (ZnAl2O4\mathrm{ZnAl_2O_4}) e l’hercynite (FeAl2O4\mathrm{FeAl_2O_4}), quest’ultima nota per i suoi cristalli microscopici con struttura ottaedrica e lucentezza simile al vetro.
    • Serie contenente alluminio e manganese: Ad esempio, la galaxite (MnAl2O4\mathrm{MnAl_2O_4}).
    • Serie contenente cromo: Comprendono la cromite (CrAl2O4\mathrm{CrAl_2O_4}) e la magnesiocromite (MgAl2O4\mathrm{MgAl_2O_4}).
      Inoltre, vi sono ferriti contenenti ferro, come il cuprospinello (CuFe2O4\mathrm{CuFe_2O_4}), la franklinite (ZnFe2O4\mathrm{ZnFe_2O_4}), la magnesioferrite (MgFe2O4\mathrm{MgFe_2O_4}), la magnetite (Fe3O4\mathrm{Fe_3O_4}) e la trevorite (NiFe2O4\mathrm{NiFe_2O_4}), che trovano applicazione in catalisi, produzione di idrogeno e pigmentazione.
  • Ferriti del Gruppo del Granato:
    Con formula generale M3Fe5O12\mathrm{M_3Fe_5O_{12}} (dove MM rappresenta ittrio o un catione delle terre rare), queste ferriti sono caratterizzate da proprietà elettromagnetiche, magneto-ottiche, meccaniche e termiche uniche. Il granato di ferro e ittrio (Y3Fe5O12\mathrm{Y_3Fe_5O_{12}}) è particolarmente utilizzato in celle a combustibile, materiali per l’energia solare e in applicazioni optoelettroniche. La sostituzione di Y3+\mathrm{Y^{3+}} o di Fe3+\mathrm{Fe^{3+}} con altri ioni (come Bi³⁺, Ce³⁺, Er³⁺, Tb³⁺, Ga³⁺, Al³⁺) consente di modulare le proprietà del materiale.
  • Ortoferriti:
    Con formula generale RFeO3\mathrm{RFeO_3} (dove RR indica uno o più elementi delle terre rare), le ortoferriti presentano una struttura cristallina ortorombica e mostrano proprietà ferromagnetiche. Un esempio notevole è il LaFeO₃, che, grazie alla sua struttura perovskitica, viene impiegato in sensori di gas, elettrodi per celle a combustibile solido e come fotocatalizzatore. Le prestazioni di questi materiali sono strettamente correlate alla loro morfologia e alle dimensioni delle particelle, fattori determinati dal metodo di sintesi.
  • Ferriti Esagonali:
    Questi materiali ferrimagnetici, con formula generale MFe12O19\mathrm{MFe_{12}O_{19}} (dove MM può essere Sr, Ba, o Pb e, in alcuni casi, l’ossigeno può essere parzialmente sostituito da ioni metallici di raggio simile), presentano un reticolo cristallino caratterizzato dalla presenza di siti ottaedrici, bipiramidi trigonali e siti tetraedrici. Le ferriti esagonali sono ulteriormente classificate in sei tipi (M, W, Y, X, Z, U) e trovano impiego in applicazioni che spaziano dai magneti permanenti ai dispositivi di registrazione magnetica e archiviazione dati, nonché in componenti per dispositivi elettrici operanti in banda microonde.

Conclusioni

Le ferriti, grazie alle loro proprietà intrinseche e alla versatilità nella sintesi e nella modulazione della struttura, rappresentano uno dei gruppi di materiali magnetici più studiati e applicati. Dal loro utilizzo in dispositivi elettronici e di comunicazione, fino alle applicazioni in campo biomedico e nell’energia, questi materiali continuano a essere oggetto di approfonditi studi scientifici e tecnologici, contribuendo in maniera significativa all’innovazione nei settori della scienza dei materiali e dell’ingegneria applicata.

GLI ULTIMI ARGOMENTI

Leggi anche

Niobato di sodio emerge come materiale chiave per innovazioni tecnologiche, con applicazioni in campi avanzati.

Il niobato di sodio (NaNbO₃) è un ossido inorganico appartenente alla classe dei niobati alcalini, noto per le sue eccellenti proprietà ferroelettriche, antiferroelettriche, piezoelettriche...

Svolta rivoluzionaria nella ricerca su N,N-dimetilacetammide

La N,N-dimetilacetammide (DMA) sta conquistando il mondo della chimica industriale come un vero campione, con la sua formula molecolare C₄H₉NO e struttura CH₃CON(CH₃)₂ che...

Approccio Hartree-Fock in meccanica quantistica.

Il Metodo Hartree-Fock nella Chimica Quantistica La chimica quantistica computazionale si avvale del metodo Hartree-Fock come base essenziale. Spesso, questo approccio funge da punto di...
è in caricamento